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Abstract

This paper tackles the problem of categorizing materials
and textures by exploiting the second order statistics. To
this end, we introduce the Extrinsic Vector of Locally Ag-
gregated Descriptors (E-VLAD), a method to combine local
and structured descriptors into a unified vector representa-
tion where each local descriptor is a Covariance Descriptor
(CovD). In doing so, we make use of an accelerated method
of obtaining a visual codebook where each atom is itself a
CovD. We will then introduce an efficient way of aggregat-
ing local CovDs into a vector representation. Our method
could be understood as an extrinsic extension of the highly
acclaimed method of Vector of Locally Aggregated Descrip-
tors [17] (or VLAD) to CovDs. We will show that the pro-
posed method is extremely powerful in classifying materi-
als/textures and can outperform complex machineries even
with simple classifiers.

keywords: Riemannian manifolds, Region covariance
descriptor, Vector of locally aggregated descriptors, Mate-
rial classification, Texture recognition.

1. Introduction
In this paper we propose a method for generating

compact and discriminative representations from localized
structured descriptors in the form of Covariance Descriptors
(CovDs) for categorizing materials and textures. Recently,
material categorization based on images has received grow-
ing attention, mainly because of its broad applications [3].
For example, in recycling centers it is required to discrimi-
nate various types of household wastes automatically (e.g.,
paper from plastic or fabric). As another example, an au-
tonomous robot needs to judge where to step on, and its
decision is affected by the type of the materials lying on the
floor. The dominant trend in classifying materials is to uti-
lize textural information [21, 37]. However, textural cues in
materials occur at finer scales as compared to ordinary tex-
ture images, which makes the two problems correlated but
not identical [21].

CovD [35] and its spatio-temporal extension, i.e.,
Cov3D [29], have been employed successfully in various vi-
sion applications such as pedestrian detection, object track-
ing, classifying human epithelial cells, and analyzing diffu-
sion tensor images (see for example [8, 25, 35, 14, 16, 7]
and references therein). Despite their popularity, most of
previous studies was devoted to the scenarios where a holis-
tic representation of images or videos sufficed for address-
ing the problem in hand. One exception is the method
of ARray of COvariance matrices (ARCO) proposed by
Tosato et al. [34]. In ARCO, a set of local CovDs is ex-
tracted from an image or video. To perform classification,
each local CovDs is assessed by a separate classifier and
majority voting is used to determine the final result. Never-
theless, training multiple classifiers on CovDs is expensive
and the resulting system requires retraining if new classes
or data are introduced.

In contrast to previous attempts, in this paper we propose
an unsupervised method for creating a compact and dis-
criminative vector representation from a set of local CovDs
(extracted from an image or video). Our idea here is in-
spired by the recent and acclaimed method of Vector of
Locally Aggregated Vectors (VLAD) [17] and extends the
original VLAD method to work with CovDs. This is of-
course not a trivial extension as CovDs are Symmetric Pos-
itive Definite (SPD) matrices with a well-known Rieman-
nian structure. As shown by a large body of recent stud-
ies [8, 13, 12, 35, 14, 16], machineries that exploit the
Riemannian geometry of CovDs should be preferred to the
the ones that make use of Euclidean geometry in handling
CovDs.

To this end, we first elaborate on an accelerated method
of learning a codebook on SPD, or tensor manifolds1. We
then introduce our main contribution, the Extrinsic ver-
sion of VLAD or E-VLAD. Compared to a BoW model on
tensor manifolds, E-VLAD encodes additional information
about the distribution of local descriptors in a compact rep-

1The word tensor manifold in this work is referred to the manifold of
symmetric positive definite matrices and should not be confused with the
rigorous mathematical definition of tensors.



resentation with relatively the same computational burden.
Our experiments show the superiority of the proposed

method against several state-of-the-art methods such as the
texton approach of Varma and Zisserman (VZ) [36, 37], the
BoW approach of Sharan et al. [30], the augmented Latent
Dirichlet Allocation (aLDA) method of Liu et al. [21], and
the Local Higher-order Statistics (LHS) method of Sharma
et al. [32] on various challenging datasets such as FMD [31]
and KTH-TIPS2-a [3] material, and Dyntex++ [9] dynamic
texture databases.

2. Related Work
Materials (and textures) can be analyzed based on the

reflectance properties of surfaces. While this school of
thought has received considerable attention in computer
graphics, successful methods rely on extra (and to some ex-
tent restrictive) constraints on surfaces, illuminations, and
structure of materials [27].

Different from methods that rely on reflectance prop-
erties, several studies propose filter banks for analyzing
texture and material images. Two notable examples are
Leung and Malik (LM) and Maximum Response filter
banks [36, 19]. Nevertheless, a more recent study by Varma
and Zisserman demonstrated that materials can be also clas-
sified using the statistical properties of pixels [37]. In par-
ticular, it is shown that joint distribution of intensity values
over compact neighborhoods can outperform filter banks
with large supports.

The work by Varma and Zisserman inspired several stud-
ies to explore the concept of BoW for material classifica-
tion. The underlying idea is to utilize small images with rich
statistical properties to encode texture or material images.
One example is the method proposed by Liu et al. [22] for
rotationally invariant material/texture classification. In [22],
a set of random measurements from sorted pixel differences
is used in a BoW model for classification. In [21], low and
mid-level features are used to successfully capture appear-
ance of materials. Several codebooks are then formed from
extracted features and then combined using an extended La-
tent Dirichlet Allocation (aLDA) model.

In this paper, we propose to create BoW models using
CovDs which encode the second order statistics of textural
information. We will show that BoW models on CovDs are
astonishingly rich and can outperform complex machineries
even with simple classifiers. Nevertheless, since CovDs are
lying on a Riemannian manifold, generating BoW models
is not trivial.

3. Background
In this section, we review basics of Riemannian geome-

try, manifold of real SPD matrices, and associated metrics.
Throughout this paper, Sd++ denotes the space of d×d SPD

matrices.

3.1. Riemannian Geometry

A manifold M is a Hausdorff topological space which
locally resembles the Euclidean space. More specifically,
for each point and a neighborhood around it, there exists a
homeomorphic (one-to-one, onto, and bidirectional contin-
uous map) to an open set in Rm for some m. The tangent
space attached to a point P on a differentiable manifold,
TPM, is a vector space that consists of the tangent vectors
of all possible curves passing through P .

A Riemannian manifold is a differential manifold with a
metric defined on its tangent spaces. The metric enables us
to define lengths and angles and is usually chosen such that
some sort of robustness to geometrical transformations is
achieved. Points on a Riemannian manifold are connected
through smooth curves. The curve with the minimum length
is called the geodesic curve and its length is the geodesic
distance between points.

Two operators, namely the exponential map and the log-
arithm map are defined to switch between the manifold and
its tangent space at P . The exponential operator expP (·) :
TPM→M, maps a tangent vector ∆ to a point X on the
manifold. The logarithm map logP (·) = exp−1P (·) :M→
TPM, is the inverse of the exponential map and maps a
point on the manifold to the tangent space at P . We note
that, the exponential and logarithm maps vary as the point
P moves along the manifold.

Geometry of SPD Matrices

The Affine Invariant Riemannian Metric (AIRM) [25] is
the most popular choice to handle the non-Euclidean struc-
ture of SPD matrices and is shown to be advantageous for
several applications [35]. For P ∈ Sd++ and two tangent
vectors ∆1,∆2 ∈ TPM, the AIRM is defined as:

〈∆1,∆2〉P , 〈P−1/2∆1P
−1/2,P−1/2∆2P

−1/2〉
= Tr

(
P−1∆1P

−1∆2

)
. (1)

For two X,Y ∈ Sd++, the geodesic distance induced by
AIRM is:

δR(X,Y ) = ‖ log(X−1/2Y X−1/2)‖F , (2)

where ‖.‖F denotes the Frobenius norm and log(·) is the
matrix principal logarithm.

Despite its appealing features, computing AIRM for two
SPD matrices demands eigenvalue decomposition. This in-
curs hefty computational load for handling a large set of
CovDs. In this paper, we use the Stein metric [33], which is
a member of the symmetrized Bregman matrix divergences.
The asymmetric Bregman divergence for two SPD matrices
X and Y is defines as



δψ(X,Y ) , ψ(X)− ψ(Y )− 〈∇ψ(Y ), X − Y 〉 , (3)

where 〈X,Y 〉 = Tr
(
XTY

)
and ψ : Sd

++ → R is a real-
valued, strictly convex and differentiable function. While
the Bregman divergences exhibit a number of useful prop-
erties, their asymmetric behavior is often counter-intuitive
and undesirable in practical applications. Therefore, a sym-
metric version of Bregman divergence is usually preferred.

δJS(X,Y ) ,
1

2
δψ

(
X,

X + Y

2

)
+

1

2
δψ

(
Y ,

X + Y

2

)
.

(4)
If ψ in (4) is chosen as − ln det (X) with det(·) denot-

ing the determinant, we arrive at the symmetric Stein diver-
gence:

S(X,Y ) , ln det

(
X + Y

2

)
− 1

2
ln det

(
XY

)
, (5)

Interestingly δS(·, ·) ,
√
S(·, ·) is a valid metric and

though computationally less demanding, is related to AIRM
in many aspects. Similar to AIRM, δ2S(·, ·) is affine invari-
ant, endows a sandwiching property (i.e., α1δ

2
S(X,Y ) ≤

δ2R(X,Y ) ≤ α2δ
2
S(X,Y )) and behaves very similarly to

AIRM along geodesics on the manifold. More specifically,
This provides our motivation for addressing problems on
Sd++ via the Stein metric.

4. Learning Riemannian codebooks
Learning a codebook is crucial to our proposed method

(i.e. E-VLAD). In this section, we elaborate on possi-
ble learning methods to generate a codebook specific to
SPD manifolds. Formally, given a set of training sam-
ples {Xi}Ni=1,Xi ∈ Sd++, we seek to estimate k clusters
C1, C2, · · · , Ck with centers {Si}ki=1 such that the sum of
squared distances over all clusters is minimized, i.e.:

min
C1,C2,··· ,Ck

k∑
i=1

∑
Xj∈Ci

δ2(Xj ,Si), (6)

where δ is a metric on Sd++.
In the most straightforward case, one can neglect the ge-

ometry of SPD matrices and vectorize training data, i.e.,
Xi to learn a codebook. As a result, codebook learning be-
comes a trivial task and can be achieved by applying for ex-
ample K-means algorithm on vectorized data. More specifi-
cally, the resulting clusters are determined by computing the
arithmetic mean of nearest training vectors to that cluster.

Despite its simplicity, several studies argue against ex-
ploiting Euclidean geometry and vector form of SPD matri-
ces for inference [25, 35]. For example, as shown by Pen-
nec et al. [25] the determinant of the weighted mean could

become greater than samples’ determinants, an undesirable
outcome known as swelling effect [1]. Therefore, geom-
etry of SPD matrices should be considered in creating the
codebook.

To benefit from the Riemannian geometry, it is possi-
ble to replace the arithmetic mean with Karcher (Fráchet)
mean [25]. Karcher mean is the point that minimizes the
following metric dispersion:

X∗ = arg min
X

m∑
i=1

δ2R(Xi,X) , (7)

where δR : M × M → R+ is the associated geodesic
distance function.

The discussion of the existence and uniqueness value of
the Karcher mean are given in [25]. Since, at the optimum
point the gradient is zero, a gradient descent algorithm can
be utilized to obtain the mean value. The details of comput-
ing the Karcher mean over SPD manifolds are given in [25].

Nevertheless, computing Karcher mean requires switch-
ing back and forth between manifold and its tangent spaces
which is computationally demanding, especially in our ap-
plication where a large number of training points is avail-
able. Hence, we opt for a faster way of computing a code-
book by making use of the Stein metric, i.e., Eqn. (5). As
mentioned in § 3.1, the behavior of the Stein metric is very
similar to that of AIRM. The main step of learning a code-
book is the computation of the centroid for the ith cluster,
i.e., min

Si

∑
Xj∈Ci

δ2S(Xj ,Si) which can be written as:

min
Si

∑
Xj∈Ci

ln det

(
X j + Si

2

)
− 1

2
ln det

(
X jSi

)
. (8)

An iterative, still less demanding way of solving (8) is
given by:

St+1
i =

[
1

|Ci|
∑

Xj∈Ci

(Xj + Sti
2

)−1]−1
. (9)

We refer the interested reader to the proofs in [4] for the de-
tails. The details of learning an accelerated codebook using
the Stein metric is provided in Algorithm 1.

To give the reader some idea about the importance of
the accelerated dictionary learning, note that in our experi-
ment on the FMD dataset (see § 6), with near 20,000 train-
ing samples of size 135 × 135, performing 10 iterations of
kmeans with AIRM requires about 59 hours on a 3.4GHz
CPU, while the accelerated method can create the dictio-
nary in less than 2 hours.



Algorithm 1 Accelerated k-means algorithm over Sd++

for learning the codebook
Input:

• training set X= {Xj}Nj=1 from the underlying Sd++ manifold,

• nIter, the number of iterations

Output:
• codebook S = {Si}ki=1 ,Si ∈ Sd++

1: Initialize the codebook S = {Si}ki=1 by selecting k samples from X
randomly

2: for t = 1→ nIter do
3: Assign each point Xj to its nearest cluster in S by computing

ln det

(
Xj+Si

2

)
− 1

2
ln det

(
XjSi

)
, 1 ≤ j ≤ N, 1 ≤ i ≤ k

4: Recompute cluster centers {Si}ki=1 by

St+1
i =

[
1
|Ci|

∑
Xj∈Ci

(
Xj+St

i
2

)−1
]−1

5: end for

5. Extrinsic Vector of Locally Aggregated De-
scriptors (E-VLAD) on SPD Manifolds

In the previous section, we elaborated on how an accel-
erated codebook can be obtained on Sd++. In this section,
we provide a detailed description on our proposed encod-
ing method for a set of local descriptors. In other words,
having a codebook, S = {Si}ki=1, at our disposal , we
seek to group a set of CovDs (or equivalently Cov3Ds),
Q = {Qi}

p
i=1, extracted from a query image (video) in

order to find a rich representation.
Jégou et al. [17] proposed the Vector of Locally Aggre-

gated Descriptors (VLAD) for the task of large-scale image
search. In VLAD, a codebook is learned by K-means on
training samples, and subsequently the extracted local de-
scriptors of an image are assigned to the closest codeword.
Then, differences of each codeword to its descriptors are ac-
cumulated. Finally, the accumulated vectors of each code-
word are concatenated and normalized.

Since, SPD matrices do not form a closed set under nor-
mal matrix subtraction, i.e., subtracting two SPD matrices
does not result in another SPD matrix, the VLAD frame-
work can not be readily extended to the space of tensors.
Our idea here is to simply embed the manifold into a vec-
tor space. To this end, we make use of a mapping from
Sd++ into the space of symmetric matrices by the principal
matrix logarithm. We are motivated by the fact that, there
always exists a unique, real and symmetric logarithm for
any SPD matrix, which can be obtained by principal matrix
logarithm. Moreover, log(·) on Sd++ is diffeomorphism (a
one-to-one, continuous, differentiable mapping with a con-
tinuous, differentiable inverse). Formally,

Theorem 1: log(·) : Sd++ → Sym(d) is C∞ and there-
fore both log(·) and its inverse exp(·) are smooth, i.e., they

Algorithm 2 The proposed E-VLAD algorithm
Input:

• Q = {Qt}
p
t=1, CovDs extracted from a query image,

• codebook S = {Si}ki=1 ,Si ∈ Sd++

Output:
• EV (Q) the E-VLAD representation of Q

1: Compute log-Euclidean representation of S using si = Vec(log(Si))

2: Compute log-Euclidean representation of Q using qt =
Vec(log(Qt))

3: for i = 1→ k do
4: Find Ci, all nearest CovDs from Q to Si using Eqn. (5)
5: Compute i-th accumulator, vi =

∑
qj∈Ci

qj − si

6: end for
7: Concatenate the resulting accumulators to form the final descriptor,

i.e., EV (Q) =
[
vT
1 ,vT

2 , · · · ,vT
k

]T

are diffeomorphisms.

Proof: We refer the reader to [1] for the proof of this the-
orem.

Embedding into the space of symmetric matrices through
principal logarithm can also be understood as embedding
Sd++ into its tangent space at identity matrix. Since tangent
spaces form a vector space, then we are able to employ Eu-
clidean tools to tackle the problem in hand. We note that
our approach here is an extrinsic approach, i.e., it depends
on the embedding Euclidean space.

Given an SPD matrix A, its log-Euclidean vector repre-
sentation, a, is unique and defined as a = Vec (log(A))
where the Vec (B) , B ∈ Sym(d) is:

Vec (B) =
[
b1,1,
√
2b1,2, · · · ,

√
2b1,d, b2,2,

√
2b2,3, · · · , bd,d

]T
.

(10)

Let Q = {Qi}
p
i=1 and S = {Si}ki=1, be a set of CovDs

(extracted from a query image) and codewords (obtained by
intrinsic K-means 1), respectively. For each codeword Si,
the resulting accumulated differences is given by:

vi =
∑

Qj∈Ci

Vec(log(Qj))−Vec(log(Si)) (11)

where CovDs belonging to a codeword Si (i.e., Ci) can
be found by the Stein metric. Final descriptor EV , is ob-
tained by concatenating k vi vectors associated with code-
words. That is, EV (Q) =

[
vT1 ,v

T
2 , · · · ,vTk

]T
. Algo-

rithm 2 assembles all the above details into pseudo-code for
E-VLAD.

6. Experiments
We start this section by introducing databases used in our

experiments. We then evaluate the performance of the pro-



posed E-VLAD against several state-of-the-art approaches
on material categorization and dynamic texture classifica-
tion.

In our experiments a set of overlapping blocks/cubes
is extracted from images/videos and the CovD/Cov3D for
each block/cube is obtained. Each E-VLAD descriptor is
normalized in two steps. First, a power normalization
is performed on each element of the E-VLAD based on the
recommendation of Jegou et al. [17]. This is to avoid having
concentrated distribution around zero. The transfer func-
tion for power normalization is: y : R → R, y(x) =
sign(x)

√
|x|, where x is an element of E-VLAD and | · |

denotes absolute value. The power normalization is fol-
lowed by `2 normalization. To classify signatures, Support
Vector Machines (SVM) [2] are employed.

In all the reported experiments, the size of the dictio-
nary for E-VLAD is set to 16. The aforementioned value
is obtained empirically as a trade-off between the complex-
ity of encoding and performance of algorithms. We will
later provide a diagram discussing the performance of Rie-
mannian version of Bag of Words (R-BoW) against baseline
methods for various dictionary sizes. Similar to E-VLAD,
R-Bow utilizes Algorithm 1 to generate its codebook. As
for the image representation, we followed the simplest form
of BoW model and assigned CovDs to their closest code-
words. The comparisons were done using the Stein metric,
followed by `2 normalization in the end.

We also provide the results of Log-Euclidean VLAD
(V LADLE), which can be readily considered as an exten-
sion of VLAD into the space of SPD matrices. We note
that VLADLE differs from E-VLAD in the sense that in
VLADLE CovDs/Cov3Ds are first mapped to the tangent
space at the identity matrix via Eqn. 10. In contrast, in
E-VLAD, the logarithm mapping is used after proper as-
signment of input CovDs/Cov3Ds to the codebook. We
will show experimentally that E-VLAD consistently out-
performs VLADLE which we conjecture is due to better
exploitation of Riemannian geometry.

6.1. Databases

In this subsection, we introduce the databases used in our
experiments. Sample images/frames are shown in Fig. 1.

Flicker Material Database: Flicker Material
Database [31] (FMD) collected from Flicker photos
of daily life material categories. It is designed from real
world examples with large scale and intra-class variations.
FMD images are presented in 10 material categories and
each category has 100 images.

UIUC Material Database: UIUC database [20] con-
tains 18 classes of complex material categories in local scale
“taken in the wild”. The images are mainly selected to have
more (compared to FMD) geometric fine-scale details.

Figure 1: Sample images from databases used in our experiments.
From top to bottom images selected from FMD [31], UIUC [20],
KTH-TIPS [15], KTH-TIPS2-a [3], and DynTex++ [9] databases.

KTH-TIPS Material Database: This database is
specifically designed for material classification task [15]. It
contains 810 images from 10 different classes captured at
9 scales, 3 different illumination directions, and 3 different
poses. Images in the database have no obvious rotation.

KTH-TIPS2-a Material Database: KTH-TIPS2-a
database [3] provides a considerable extension to KTH-
TIPS database. It consists of 4397 images in 11 classes with
four samples per class. The images are photographed at 9
scales, 4 different illumination conditions, and 3 poses.

DynTex++ Dynamic Texture Database: DynTex++
database [9] contains videos of moving scenes in 36 classes.
Each class is comprised of 100 (50×50×50) pre-processed
videos.

Except for KTH-TIPS2-a, we split the databases into
even size training and test sets. This was done by randomly
assigning half of the instances of each class to the training
data and using the remaining images as the test set. The
random split was repeated 14 times for FMD (as proposed
by Sharan et al. [30]) and 10 times for the others. For eval-
uation on KTH-TIPS2-a, we followed the standard protocol
used in [3, 32] where three samples of each class are con-
sidered for training and the remaining sample is used for
testing.

6.2. Application to Material Categorization

We first elaborate how CovDs are extracted from images
for material categorization. A feature vector is assigned to
sampled pixels in the image through using dense SIFT [38]
features. More specifically, image pixels are first sampled



Table 1: Comparisons between the proposed approaches to the state-of-the-art methods on Material and dynamic texture classification
databases. Correct Classification Rate (in %) is reported here.

Database VZ[36] aLDA[21] Harandi[11] Sharan[30] Liao[20] VZ[37] Liu[22] Caputo[3] LHS[32] PD-LBP[28] V LADLE E-VLAD

FMD 23.8 44.6 51.4 55.6 29.9 - - - - - 55.4 56.5
UIUC - - - - 43.5 - - - - - 43.4 60.1
KTH-TIPS - - - - - 92.4 99.1 - - - 99.1 99.5
KTH-TIPS2-a - - - - - - - 71.0 73.0 - 71.4 76.1
DynTex++ - - - - - - - - - 92.4 89.2 92.9

at a dense grid with 3 pixel spacing and then described by

F(x,y) =
[
IR(x, y), IG(x, y), IB(x, y),

∣∣∣∣∂I∂x
∣∣∣∣ , ∣∣∣∣∂I∂y

∣∣∣∣
,

∣∣∣∣∂2I∂x2

∣∣∣∣ , ∣∣∣∣∂2I∂y2

∣∣∣∣ , |H1(x, y)|, · · · , |H128(x, y)|
]
, (12)

where Ic(x, y), c ∈ {R,G,B} denotes color information at
position (x, y), I(x, y) is the gray-value intensity,

∣∣ ∂I
∂x

∣∣ and∣∣∣ ∂I∂y ∣∣∣ are magnitude of gradients along x and y directions,∣∣∣ ∂2I
∂x2

∣∣∣ and
∣∣∣ ∂I2∂y2

∣∣∣ are magnitude of Laplacians along x and y
directions, and H1(x, y) to H128(x, y) are bin values of the
standard SIFT descriptor computed at x, y.

Therefore, Each region is described by a 135 × 135 co-
variance matrix formed from the aforementioned features.
We compare E-VLAD against the state-of-the-art meth-
ods proposed in [21, 30, 20, 3, 32, 22]. Beside the state-
of-the-art methods, we use Varma-Zisserman’s (VZ) algo-
rithm [37, 36] as a baseline here. Loosely speaking, the
VZ method clusters 5× 5 pixel gray-scale patches as code-
words, obtains histogram of the codewords, and performs
classification by nearest neighbor classifier.

In [21], authors considered the FMD database and pro-
posed complex low and mid-level features in a Bayesian
framework for material classification. To this end, features
such as color, Gabor [18], SIFT [23], micro-Gabor, micro-
SIFT, curvature, HOG [6] along the normal and tangent di-
rections of edges were extracted and combined using aug-
mented Latent Dirichlet Allocation (aLDA) [21]. In a dis-
criminative approach, Sharan et al. [30] use the same set
of features in a BoW framework and SVM as classifier.
Harandi et al. [11] perform classification using sparse cod-
ing on Sd++ by embedding the space of SPD matrices into
Hilbert spaces.

Liao et al. [20], propose a more general approach for cat-
egorizing materials using both FMD and UIUC databases.
In their method, geometric details are extracted from intrin-
sic material components by a non-parametric patch-based
filter. Since UIUC is a very recent database, very few re-
sults are available for it.

On KTH-TIPS database, Liu et al. [22] extract a set
of random measurements from sorted pixel differences and
embed them into a BoW model. In [5], texture histograms

are obtained from a visual vocabulary of Basic Image Fea-
tures [10] computed at every pixels at four scales.

On KTH-TIPS2-a database [3], Caputo et al. [3] pro-
posed a 3-scale LBP [24] descriptor, and Sharma et al. [32]
proposed to make use of Local Higher order Statistics
(LHS) on image patches for classification.

In Table 1, we compare the performance of the afore-
mentioned methods against E-VLAD. On all databases, E-
VLAD approach obtains the highest accuracy. We note
that, unlike the methods proposed in [21] and [30] for
classifying FMD images, our E-VLAD is not biased to a
specific database. On UIUC, the difference between E-
VLAD and the method proposed by Liao et al. [20], exceeds
16 percentage points. On KTH-TIPS, E-VLAD achieves
the highest accuracy of 99.5% and outperforms the other
methods. On KTH-TIPS2-a, E-VLAD is more than 3 per-
centage points better than the closest competitor, i.e., the
LHS method. More importantly, E-VLAD outperforms
VLADLE by a large support in all reported results. As
mentioned earlier, we conjecture that this stems from bet-
ter exploitation of Riemannian geometry in obtaining the
codebook and signature for E-VLAD.

To show the effectiveness of the proposed descriptor, we
performed a further experiment on FMD database. To this
end, we compared R-Bow against baseline methods, namely
SIFT [23] and LBP [24] in a BoW framework for various
codebook sizes in Fig. 2. R-BoW outperforms the baseline
methods for all the codebooks.

6.3. Application to Dynamic Texture Classification

In this part, we assess and contrast the proposed method
for the task of dynamic texture classification which is
closely related to material classification. To this end, we
performed an extra experiment on DynTex++ [9] dynamic
texture database.

To generate points on the manifold, we chose spatio-
temporal Gabor filter banks with moving Gaussian envelope
proposed previously for motion analysis [26]. The response
of a spatio-temporal Gabor filter centered at (x, y, t) with
speed (pixels per frame) υ, orientation θ, and phase offset ϕ
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Figure 2: Performance versus the size of dictionary for BoW-LBP,
BoW-SIFT, and R-BoW.

is defined as:

g(υ,θ,ϕ)(x, y, t) =
γ

2πσ2
exp(

−((x+ υct)
2 + γ2y2)

2σ2
)

· cos(2π

λ
(x+ υt) + ϕ) · 1√

2πτ
exp(

−(t− µt)2

2τ2
) ,

(13)

where x = xcos(θ)+ysin(θ) and y = −xsin(θ)+ycos(θ).
The parameters of this filter (i.e., γ, λ, ϕ, τ , and µ) were
chosen based on the recommendations of [26]. Each pixel
at location (x, y, t) in a spatio-temporal region is described
by:

f(x,y,t) =
[
I(x, y, t),

∣∣∣∣∂I∂x
∣∣∣∣ , ∣∣∣∣∂I∂y

∣∣∣∣ , ∣∣∣∣∂I∂t
∣∣∣∣ , |g(0,0,ϕ)(x, y, t)|

, |g(0,1,ϕ)(x, y, t)|, ..., |g(0,θ,ϕ)(x, y, t)|

, |g(υ,0,ϕ)(x, y, t)|, ..., |g(υ,θ,ϕ)(x, y, t)|
]
, (14)

We used a combination of 4 speeds and 4 orientations
to extract covariance matrices. Therefore, each spatio-
temporal region is described by a 20×20 Cov3D. In Table 1
the proposed method is compared against the recent Patch
Dependent learning-based LBP (PD-LBP) [28] method. Ta-
ble 1 indicates that encoding Cov3Ds using E-VLAD out-
performs PD-LBP. We also note that E-VLAD is signifi-
cantly better than VLADLE.

7. Conclusions and Future Work
Tackling the task of material classification, in this paper

we have introduced an approach to extend Vector of Locally
Aggregated Descriptors (VLAD) [17] to the space of Sym-
metric Positive Definite (SPD) matrices or tensors. In doing
so, we followed the concept used in several state-of-the-art
methods in material/texture classification (e.g., [37]), which

suggests that rich descriptors for both tasks should en-
code distribution of intensity values over compact neighbor-
hoods. Since Covariance Descriptors (CovD) [35] encode
second order statistics, it is natural to exploit them for ma-
terial classification. The difficulty here comes from the fact
that CovDs are SPD matrices and naturally form a Rieman-
nian manifold. The Riemannian structure obviously hin-
drances employing methods developed in Euclidean spaces
to work successfully with CovDs.

To this end, we made use of a special type of the Breg-
man matrix divergence and introduced an accelerated ver-
sion of intrinsic k-means algorithm. We then proposed to
embed the SPD manifolds into a Euclidean space via a dif-
feomorphism to extend VLAD to its Riemannian version,
i.e., E-VLAD. Our tests showed that E-VLAD consistently
outperforms state-of-the-art methods even with simple lin-
ear classifiers. Our next goal is to study the performance
of the proposed methods on other recognition tasks. More-
over, we are exploring how an intrinsic version of VLAD
algorithm can be devised on SPD manifolds.
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